skip to main content


Search for: All records

Creators/Authors contains: "Poronik, Yevgen M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The electronically excited singlet states of nitroaromatic compounds are often presumed to be essentially non-fluorescent. Nonetheless, a growing number of reports in the literature have demonstrated that certain structural types of nitroaromatics can indeed fluoresce, and often quite efficiently. Consideration of the mechanisms responsible for the typical fast or ultrafast non-radiative deactivation of the excited singlet states of nitroaromatics points to several general principles for their design that combine the strong electron-withdrawing properties of the nitro group with reasonable fluorescence quantum yields. An overview of published examples of fluorescent nitroaromatics emphasizes these concepts in the context of the importance of chromophore architecture and conformation and the defining roles of excited state charge transfer and solvent polarity in modulating the non-radiative decay channels that compete with fluorescence. Overcoming the stigma that nitroaromatics are intrinsically destined to be non-fluorescent thus paves the way for incorporating the strongly electron-withdrawing nitro group into the existing toolbox for the development of new nitro-substituted fluorophores and chromophores tuned to specific applications. 
    more » « less
  2. Nitroaromatics seldom fluoresce. The importance of electron-deficient (n-type) conjugates, however, has inspired a number of strategies for suppressing the emission-quenching effects of the strongly electron-withdrawing nitro group. Here, we demonstrate how such strategies yield fluorescent nitroaryl derivatives of dipyrrolonaphthyridinedione (DPND). Nitro groups near the DPND core quench its fluorescence. Conversely, nitro groups placed farther from the core allow some of the highest fluorescence quantum yields ever recorded for nitroaromatics. This strategy of preventing the known processes that compete with photoemission, however, leads to the emergence of unprecedented alternative mechanisms for fluorescence quenching, involving transitions to dark nπ* singlet states and aborted photochemistry. Forming nπ* triplet states from ππ* singlets is a classical pathway for fluorescence quenching. In nitro-DPNDs, however, these ππ* and nπ* excited states are both singlets, and they are common for nitroaryl conjugates. Understanding the excited-state dynamics of such nitroaromatics is crucial for designing strongly fluorescent electron-deficient conjugates. 
    more » « less
  3. Abstract

    Electron-deficient π-conjugated functional dyes lie at the heart of organic optoelectronics. Adding nitro groups to aromatic compounds usually quenches their fluorescence via inter-system crossing (ISC) or internal conversion (IC). While strong electronic coupling of the nitro groups with the dyes ensures the benefits from these electron-withdrawing substituents, it also leads to fluorescence quenching. Here, we demonstrate how such electronic coupling affects the photophysics of acceptor–donor–acceptor fluorescent dyes, with nitrophenyl acceptors and a pyrrolo[3,2-b]pyrrole donor. The position of the nitro groups and the donor-acceptor distance strongly affect the fluorescence properties of thebis-nitrotetraphenylpyrrolopyrroles. Concurrently, increasing solvent polarity quenches the emission that recovers upon solidifying the media. Intramolecular charge transfer (CT) and molecular dynamics, therefore, govern the fluorescence of these nitro-aromatics. While balanced donor-acceptor coupling ensures fast radiative deactivation and slow ISC essential for large fluorescence quantum yields, vibronic borrowing accounts for medium dependent IC via back CT. These mechanistic paradigms set important design principles for molecular photonics and electronics.

     
    more » « less